Evaluating the Gelling Properties of Red Kidney Beans Protein Isolates with Different Gums

Gelling Properties of Red Kidney Beans Protein Isolates

Authors

  • Nighat Raza Department of Food Science and Technology, MNS-University of Agriculture, Multan, Pakistan
  • Adeel Hakim Department of Food Science and Technology, MNS-University of Agriculture, Multan, Pakistan
  • Muhammad Shahbaz Department of Food Science and Technology, MNS-University of Agriculture, Multan, Pakistan
  • Mujahid Farid Department of Environmental Science, University of Gujrat, Gujrat, Pakistan

DOI:

https://doi.org/10.54393/df.v4i01.72

Keywords:

Red Kidney Beans, Protein, Gums, Xanthan, Carrageenan, Gel, Yogurt

Abstract

Due to the higher consumption, increased demand of animal based hydrocolloids and problems associated with animal based hydrocolloids are religious beliefs and mad cow disease, researchers are looking for alternative sources of hydrocolloids like marine and plant based hydrocolloids. Objective: To evaluate the gelling properties of red kidney beans protein isolates with different gums. Methods: The gelling powder developed with red kidney bean protein (KPI)-carrageenan (CG) and protein-xanthan (XG) gum with six different concentrations. Results: Added protein increased the plasticity of the gel and showed a higher blooms strength and hardness in all treatments except T1. KPI-CG gel had bloom strength values 198.67 ±1.53g, 249.67 ±1.53g and 282.33 ±1.56g and respectively KPI-XG gel bloom strength values were 170.33 ±1.6g, 232.67 ±2.08g and 256.67 ±2.52g; while hardness of KPI-CG gel shows 23.5 ±0.5N, 37 ±1N, 42.33 ±1.54N and 22 ±1N, 34 ±1N, 40 ±1N of KPI-XG gel respectively. The lower Gˈˈ values than Gˈ indicate that there is gelling ability in all the concentrations. Added carrageenan-protein gelling agent with maximum gum concentration showed the highest gel strength of 1629.99±16.12 pa which is double the amount of KPI-XG gel elasticity 878.043±8.08 pa. Conclusions: These results indicate that the KPI-CG mixed gel has a better gelling strength. The outcomes of this work will be used to provide the groundwork for developing a novel designed plant protein-based gel system and the use of gel in yoghurt, which might increase functionality over protein or gums alone and replace the animal-based gelling component.

References

Liu S, Low NH, Nickerson MT. Effect of pH, salt, and biopolymer ratio on the formation of pea protein isolate− gum arabic complexes. Journal of Agricultural and Food Chemistry. 2009 Feb; 57(4): 1521-6. doi: 10.1021/jf802643n. DOI: https://doi.org/10.1021/jf802643n

Boye JI, Aksay S, Roufik S, Ribéreau S, Mondor M, Farnworth E, et al. Comparison of the functional properties of pea, chickpea and lentil protein concentrates processed using ultrafiltration and isoelectric precipitation techniques. Food Research International. 2010 Mar; 43(2): 537-46. doi: 10.1016/j.foodres.2009.07.021. DOI: https://doi.org/10.1016/j.foodres.2009.07.021

Gupta S, Chhabra GS, Liu C, Bakshi JS, Sathe SK. Functional properties of select dry bean seeds and flours. Journal of Food Science. 2018 Aug; 83(8): 2052-61. doi: 10.1111/1750-3841.14213. DOI: https://doi.org/10.1111/1750-3841.14213

Pownall TL, Udenigwe CC, Aluko RE. Amino acid composition and antioxidant properties of pea seed (Pisum sativum L.) enzymatic protein hydrolysate fractions. Journal of Agricultural and Food Chemistry. 2010 Apr; 58(8): 4712-8. doi: 10.1021/jf904456r. DOI: https://doi.org/10.1021/jf904456r

Yin SW, Tang CH, Wen QB, Yang XQ, Li L. Functional properties and in vitro trypsin digestibility of red kidney bean (Phaseolus vulgaris L.) protein isolate: Effect of high-pressure treatment. Food Chemistry. 2008 Oct; 110(4): 938-45. doi: 10.1016/j.foodchem.2008.02.090. DOI: https://doi.org/10.1016/j.foodchem.2008.02.090

Sarmiento-Franco LA, Gorocica E, Ramirez L, Castillo J, Santos R, Díaz M. True metabolizable energy and digestibility of five Vigna unguiculata varieties in chickens. Tropical and Subtropical Agroecosystems. 2010 Nov; 14(1): 179-83.

Nyau V. Nutraceutical perspectives and utilization of common beans (Phaseolus vulgaris L.): A review. African Journal of Food, Agriculture, Nutrition and Development. 2015 Feb; 14(7): 9483-96. doi: 10.18697/ajfand.66.12990. DOI: https://doi.org/10.18697/ajfand.66.12990

Amarowicz R and Pegg RB. Legumes as a source of natural antioxidants. European Journal of Lipid Science and Technology. 2008 Oct; 110(10): 865-78. doi: 10.1002/ejlt.200800114. DOI: https://doi.org/10.1002/ejlt.200800114

Xu BJ and Chang SK. Total phenolic content and antioxidant properties of eclipse black beans (Phaseolus vulgaris L.) as affected by processing methods. Journal of Food Science. 2008 Mar; 73(2): H19-27. doi: 10.1111/j.1750-3841.2007.00625.x. DOI: https://doi.org/10.1111/j.1750-3841.2007.00625.x

Tang CH, Sun X, Yin SW, Ma CY. Transglutaminase-induced cross-linking of vicilin-rich kidney protein isolate: Influence on the functional properties and in vitro digestibility. Food Research International. 2008 Dec; 41(10): 941-7. doi: 10.1016/j.foodres.2008.07.015. DOI: https://doi.org/10.1016/j.foodres.2008.07.015

Yin SW, Tang CH, Wen QB, Yang XQ, Yuan DB. The relationships between physicochemical properties and conformational features of succinylated and acetylated kidney bean (Phaseolus vulgaris L.) protein isolates. Food Research International. 2010 Apr; 43(3): 730-8. doi: 10.1016/j.foodres.2009.11.007. DOI: https://doi.org/10.1016/j.foodres.2009.11.007

van de Velde F, de Hoog EH, Oosterveld A, Tromp RH. Protein-polysaccharide interactions to alter texture. Annual Review of Food Science and Technology. 2015 Apr; 6: 371-88. doi: 10.1146/annurev-food-022814-015558. DOI: https://doi.org/10.1146/annurev-food-022814-015558

Dickinson E. Hydrocolloids acting as emulsifying agents–How do they do it? Food Hydrocolloids. 2018 May; 78: 2-14. doi: 10.1016/j.foodhyd.2017.01.025. DOI: https://doi.org/10.1016/j.foodhyd.2017.01.025

Yang X, Li A, Li D, Guo Y, Sun L. Applications of mixed polysaccharide-protein systems in fabricating multi-structures of binary food gels—A review. Trends in Food Science & Technology. 2021 Mar; 109: 197-210. doi: 10.1016/j.tifs.2021.01.002. DOI: https://doi.org/10.1016/j.tifs.2021.01.002

Jones OG and McClements DJ. Functional biopolymer particles: design, fabrication, and applications. Comprehensive Reviews in Food Science and Food Safety. 2010 Jul; 9(4): 374-97. doi: 10.1111/j.1541-4337.2010.00118.x. DOI: https://doi.org/10.1111/j.1541-4337.2010.00118.x

Chen H, Ji A, Qiu S, Liu Y, Zhu Q, Yin L. Covalent conjugation of bovine serum album and sugar beet pectin through Maillard reaction/laccase catalysis to improve the emulsifying properties. Food Hydrocolloids. 2018 Mar; 76: 173-83. doi: 10.1016/j.foodhyd.2016.12.004. DOI: https://doi.org/10.1016/j.foodhyd.2016.12.004

Shimelis EA and Rakshit SK. Effect of processing on antinutrients and in vitro protein digestibility of kidney bean (Phaseolus vulgaris L.) varieties grown in East Africa. Food Chemistry. 2007 Jan; 103(1): 161-72. doi: 10.1016/j.foodchem.2006.08.005. DOI: https://doi.org/10.1016/j.foodchem.2006.08.005

Kusumah SH, Andoyo R, Rialita T. Isolation and characterization of red bean and green bean protein using the extraction method and isoelectric pH. SciMedicine Journal. 2020 Jun; 2(2): 77-85. doi: 10.28991/SciMedJ-2020-0202-5. DOI: https://doi.org/10.28991/SciMedJ-2020-0202-5

Lopes-da-Silva JA, and Monteiro SR. Gelling and emulsifying properties of soy protein hydrolysates in the presence of a neutral polysaccharide. Food Chemistry. 2019 Oct; 294: 216-23. doi: 10.1016/j.foodchem.2019.05.039. DOI: https://doi.org/10.1016/j.foodchem.2019.05.039

Hafidz RM, Yaakob CM, Amin I, Noorfaizan A. Chemical and functional properties of bovine and porcine skin gelatin. International Food Research Journal. 2011 May; 18(2): 787-91.

Sarbon NM, Badii F, Howell NK. Preparation and characterisation of chicken skin gelatin as an alternative to mammalian gelatin. Food hydrocolloids. 2013 Jan; 30(1): 143-51. doi: 10.1016/j.foodhyd.2012.05.009. DOI: https://doi.org/10.1016/j.foodhyd.2012.05.009

Ruchi C and Sheel S. Conventional nutrients and antioxidants in red kidney beans (Phaseolus vulgaris L.): an explorative and product development endeavour. Annals Food Science and Technology. 2013; 14(2): 275-85.

Wani IA, Andrabi SN, Sogi DS, Hassan I. Comparative study of physicochemical and functional properties of flours from kidney bean (Phaseolus vulgaris L.) and green gram (Vigna radiata L.) cultivars grown in Indian temperate climate. Legume Science. 2020 Mar; 2(1): e11. doi: 10.1002/leg3.11. DOI: https://doi.org/10.1002/leg3.11

Rui X, Boye JI, Ribereau S, Simpson BK, Prasher SO. Comparative study of the composition and thermal properties of protein isolates prepared from nine Phaseolus vulgaris legume varieties. Food Research International. 2011 Oct; 44(8): 2497-504. doi: 10.1016/j.foodres.2011.01.008. DOI: https://doi.org/10.1016/j.foodres.2011.01.008

Moreno HM, Díaz MT, Borderías AJ, Domínguez-Timón F, Varela A, Tovar CA, et al. Effect of Different Technological Factors on the Gelation of a Low-Lectin Bean Protein Isolate. Plant Foods for Human Nutrition. 2022 Mar; 77(1): 141-9. doi: 10.1007/s11130-022-00956-5. DOI: https://doi.org/10.1007/s11130-022-00956-5

Muhammed JI and Neme G. Effect of Processing Methods on Nutritional Value of Dab 410 And Ser119 Common Bean (Phaseolus Vulgaris L.) Varieties Grown in Ethiopia (Doctoral dissertation, Haramaya University). 2023. Available at: http://ir.haramaya.edu.et//hru/handle/123456789/6347.

Roy M, Sarker A, Azad MA, Shaheb MR, Hoque MM. Evaluation of antioxidant and antimicrobial properties of dark red kidney bean (Phaseolus vulgaris) protein hydrolysates. Journal of Food Measurement and Characterization. 2020 Feb; 14: 303-13. doi: 10.1007/s11694-019-00292-4. DOI: https://doi.org/10.1007/s11694-019-00292-4

Olanipekun OT, Omenna EC, Olapade OA, Suleiman P, Omodara OG. Effect of boiling and roasting on the nutrient composition of kidney beans seed flour. Sky Journal of Food Science. 2015 Mar; 4(2): 024-9.

Fonkwe LG, Narsimhan G, Cha AS. Characterization of gelation time and texture of gelatin and gelatin–polysaccharide mixed gels. Food Hydrocolloids. 2003 Nov; 17(6): 871-83. doi: 10.1016/S0268-005X(03)00108-5. DOI: https://doi.org/10.1016/S0268-005X(03)00108-5

Binsi PK, Nayak N, Sarkar PC, Joshy CG, Ninan G, Ravishankar CN. Gelation and thermal characteristics of microwave extracted fish gelatin–natural gum composite gels. Journal of Food Science and Technology. 2017 Feb; 54: 518-30 doi: 10.1007/s13197-017-2496-9. DOI: https://doi.org/10.1007/s13197-017-2496-9

Pranoto Y, Lee CM, Park HJ. Characterizations of fish gelatin films added with gellan and κ-carrageenan. LWT-Food Science and Technology. 2007 Jun; 40(5): 766-74. doi: 10.1016/j.lwt.2006.04.005. DOI: https://doi.org/10.1016/j.lwt.2006.04.005

Pang Z, Luo Y, Li B, Zhang M, Liu X. Effect of different hydrocolloids on tribological and rheological behaviors of soymilk gels. Food Hydrocolloids. 2020 Apr; 101: 105558. doi: 10.1016/j.foodhyd.2019.105558. DOI: https://doi.org/10.1016/j.foodhyd.2019.105558

Baeza RI, Carp DJ, Pérez OE, Pilosof AM. κ-Carrageenan—protein interactions: Effect of proteins on polysaccharide gelling and textural properties. LWT. 2002 Dec; 35(8): 741-7. doi: 10.1006/fstl.2002.0938. DOI: https://doi.org/10.1006/fstl.2002.0938

Li J, Eleya MO, Gunasekaran S. Gelation of whey protein and xanthan mixture: Effect of heating rate on rheological properties. Food Hydrocolloids. 2006 Jul; 20(5): 678-86. doi: 10.1016/j.foodhyd.2005.07.001. DOI: https://doi.org/10.1016/j.foodhyd.2005.07.001

de Alcântara MG, de Freitas Ortega N, Souza CJ, Garcia-Rojas EE. Electrostatic hydrogels formed by gelatin and carrageenan induced by acidification: Rheological and Structural Characterization. Food Structure. 2020 Apr; 24: 100137. doi: 10.1016/j.foostr.2020.100137. DOI: https://doi.org/10.1016/j.foostr.2020.100137

Zhang H, Yang L, Tu Y, Wu N, Jiang Y, Xu M. Changes in texture and molecular forces of heated‐induced egg white gel with adding xanthan gum. Journal of Food Process Engineering. 2019 Jun; 42(4): e13071. doi: 10.1111/jfpe.13071. DOI: https://doi.org/10.1111/jfpe.13071

Zhang J, Wang G, Liang Q, Cai W, Zhang Q. Rheological and microstructural properties of gelatin B/tara gum hydrogels: effect of protein/polysaccharide ratio, pH and salt addition. LWT. 2019 Apr; 103: 108-15. doi: 10.1016/j.lwt.2018.12.080. DOI: https://doi.org/10.1016/j.lwt.2018.12.080

Downloads

Published

2023-06-30
CITATION
DOI: 10.54393/df.v4i01.72
Published: 2023-06-30

How to Cite

Raza, N., Hakim, A. ., Shahbaz, M. ., & Farid, M. . (2023). Evaluating the Gelling Properties of Red Kidney Beans Protein Isolates with Different Gums: Gelling Properties of Red Kidney Beans Protein Isolates. DIET FACTOR (Journal of Nutritional and Food Sciences), 4(01), 25–31. https://doi.org/10.54393/df.v4i01.72

Issue

Section

Original Article

Plaudit

Most read articles by the same author(s)